EQUILIBRIUM

Chemical Equilibrium

REVERSIBLE REACTIONS

• Forward Rxn: $A + B \rightarrow C + D$ • Reverse Rxn: $A + B \leftarrow C + D$

Written as:

 $A + B \longleftrightarrow C + D$ OR $A + B \leftrightarrow C + D$

ENERGY CONSIDERATIONS

 A reversible reaction has both an endothermic rxn and an exothermic rxn

 At first when a reaction begins, the reactants begin forming products

 As the reactants are used up, the rate of the forward reaction slows down

When there are more products, the reverse reaction rate begins to increase

• The forward and reverse reactions are happening at the same time

 When the rate forward = the rate reverse you have <u>chemical equilibrium</u>

 The rate forward = the rate reverse, as long as the factors that control rates stay the same

 If a system is in chemical equilibrium then the concentrations of the reactants and products must be constant

DYNAMIC EQUILIBRIUM

- When concentration of reactants and of products are *constant*
- When rate of forward reaction is *equal* to the rate of the reverse
 - Rate_{R \rightarrow P} = Rate_{P \rightarrow R}

