LE CHÂTELIER'S PRINCIPLE

LE CHÂTELIER'S PRINCIPLE

"when a system at equilibrium is disturbed by a change in temp., pressure, or conc., the system shifts its equilibrium to counteract this change."

STRESSES ON EQUILIBRIUM

-Concentration

Catalyst has no effect on equilibrium

- Adding or removing a reactant or product
- Temperature
- Heating or cooling a reaction
- Dependent on if reaction is endo or exo
- Pressure
- Depends ONLY on gases in a reaction
-A shift is when a stress is applied to a reaction and the system corrects the change to return to equilibrium

CHANGE IN CONCENTRATION

- If concentration (or amount) of a substance increases, then the reaction shifts away from the increase
- If concentration (or amount) of a substance decreases, then the reaction shifts towards the decrease

CONCENTRATION CHANGE EXAMPLE

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longleftrightarrow 2 \mathrm{NH}_{3}(g)+92 \mathrm{~kJ}
$$

Stress makes side with H_{2} lift up
Equilibrium

-Stress: $\mathrm{H}_{\mathbf{2}}$ is added to the system
"What must be done to both sides of the reaction to go back to equilibrium?

- Reaction shifts to side below equilibrium line:
- so will shift RIGHT towards products

TRY THIS:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longleftrightarrow 2 \mathrm{NH}_{3}(g)+92 \mathrm{~kJ}
$$

-Stress: $\mathbf{N H}_{\mathbf{3}}$ is added to the system
-What must be done to both sides of the reaction to go back to equilibrium?

- Reaction shifts to side below equilibrium line:
- so will shift LEFT towards reactants

Shifts to side of rxn that must increase
Shifts away from side of rxn that must decrease

CHANGE IN TEMPERATURE

- Endothermic: A + B + energy \rightarrow C + D
- If temp increases, then the reaction shifts away from the increase, towards products
- If temp decreases, then the reaction shifts towards the decrease, towards reactants
- Exothermic: A + B \rightarrow C + D + energy
- If temp increases, towards reactants
- If temp decreases, towards products

TEMPERATURE CHANGE EXAMPLE

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \leftrightarrow 2 \mathrm{NH}_{3}(g)+92 \mathrm{~kJ}
$$

Equilibrium $---\infty$
-Stress: system is cooled Stress makes side with heat drop
-What must be done to both sides of the reaction to go back to equilibrium?

- Reaction shifts to side below equilibrium line:
- so will shift RIGHT towards products

Shifts to side of rxn that must increase

TRY THIS:

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longleftrightarrow 2 \mathrm{NH}_{3}(g)+92 \mathrm{~kJ}_{\text {stres }}
$$

Stress makes side with heat lift up
Equilibrium
-Stress: system is heated
-What must be done to both sides of the reaction to go back to equilibrium?

- Reaction shifts to side below equilibrium line:
- so will shift LEFT towards reactants

Shifts to side of rxn that must increase
Shifts away from side of rxn that must decrease

CHANGE IN PRESSURE

- Only affects gases because affects volume of system
- Need to count \# of moles of gases (coefficients)
- Increase in pressure means decrease in volume, so the reaction will shift to the side with fewer moles of gas
- Decrease in pressure means an increase in volume, so the reaction will shift to the side with more moles of gas

PRESSURE CHANGE EXAMPLE

${ }_{1,3=4 \text { moles }}^{2 \text { 2moses }}$

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})+92 \mathrm{~kJ}$
-Change: system pressure is decreased vincreases -What must be done to both sides of the reaction to go back to equilibrium?

- Reaction shifts to side with more gas moles
- so will shifts LEFT towards reactants

Shifts to side of rxn that must increase Shifts away from side of rxn that must decrease

- Reactants must increase \& products must decrease to return to equilibrium

PRESSURE CHANGE EXAMPLE

$$
\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longleftrightarrow 2 \mathrm{NH}_{3}(g)+92 \mathrm{~kJ}
$$

-Change: system volume is decreased

- What must be done to both sides of the reaction to go back to equilibrium?
-Reaction shifts to side with less gas moles
- so will shift RIGHT towards products

Shifts to side of rxn that must increase
Shifts away from side of $r \times n$ that must decrease

- Reactants must decrease \& products must increase to return to equilibrium

TRY THIS ONE:

Predict how each of the following will affect the equilibrium:

$$
\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)+\text { energy } \longleftrightarrow \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g)
$$

- Adding $\mathrm{H}_{2} \mathrm{O}$ to the system
-Removing CO from the system
- Adding H_{2} to the system
- Adding a catalyst Nothing b/c only affects speed not reaction
- Removing energy
- Increase the volume of the system

SAME ONE BUT IN TABLE FORM：

Predict how each of the following will affect the equilibrium：

$$
\mathrm{H}_{2}(g)+\mathrm{CO}_{2}(g)+\text { energy } \leftrightarrow \mathrm{H}_{2} \mathrm{O}(g)+\mathrm{CO}(g)
$$

Stress	Direction of Shift	Effect on $\left[\mathrm{H}_{2}\right]$	Effect on $\left[\mathrm{CO}_{2}\right]$	Effect on $\left[\mathrm{H}_{2} \mathrm{O}\right]$	Effect on ［CO］
Adding $\mathrm{H}_{2} \mathrm{O}$	LEFT	个	个	－－－－－－	\dagger
Removing CO	RIGHT	\downarrow	\square	\uparrow	－－－
Adding H_{2}	RIGHT	－－	\cdots	个	个
Add catalyst	No Change	兂			
Removing energy	LEFT			\checkmark	\square
Increase volume	No Change				

