LE CHÂTELIER'S PRINCIPLE

LE CHÂTELIER'S PRINCIPLE

"when a system at equilibrium is disturbed by a change in temp., pressure, or conc., the system shifts its equilibrium to counteract this change."

STRESSES ON EQUILIBRIUM

- Concentration
- **Catalyst has no effect on equilibrium**
- Adding or removing a reactant or product
- Temperature
 - Heating or cooling a reaction
 - Dependent on if reaction is endo or exo
- Pressure
 - Depends ONLY on gases in a reaction
- A shift is when a stress is applied to a reaction and the system corrects the change to return to equilibrium

CHANGE IN CONCENTRATION

 If concentration (or amount) of a substance increases, then the reaction shifts away from the increase

 If concentration (or amount) of a substance decreases, then the reaction shifts towards the decrease

CONCENTRATION CHANGE EXAMPLE

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$$

- Stress: H₂ is added to the system
 - What must be done to both sides of the reaction to go back to equilibrium?
- •Reaction shifts to side below equilibrium line:
 - so will shift RIGHT towards products

TRY THIS:

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$$

Stress makes side with NH₃ lift up

- Stress: NH₃ is added to the system
 - What must be done to both sides of the reaction to go back to equilibrium?
- •Reaction shifts to side below equilibrium line:
 - so will shift LEFT towards reactants

CHANGE IN TEMPERATURE

- Endothermic: A + B + energy → C + D
 - If temp increases, then the reaction shifts away from the increase, towards products
 - If temp decreases, then the reaction shifts towards the decrease, towards reactants
- Exothermic: $A + B \rightarrow C + D + energy$
 - If temp increases, towards reactants
 - If temp decreases, towards products

TEMPERATURE CHANGE EXAMPLE

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$$

Equilibrium — — —

Stress makes side with heat drop

- Stress: system is cooled
 - What must be done to both sides of the reaction to go back to equilibrium?
- •Reaction shifts to side below equilibrium line:
 - so will shift RIGHT towards products

TRY THIS:

$$N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$$
Stress makes side with heat lift up

- Stress: system is heated
 - What must be done to both sides of the reaction to go back to equilibrium?
- •Reaction shifts to side below equilibrium line:
 - so will shift LEFT towards reactants

CHANGE IN PRESSURE

- Only affects gases because affects volume of system
- Need to count # of moles of gases (coefficients)
- Increase in pressure means decrease in volume, so the reaction will shift to the side with fewer moles of gas
- Decrease in pressure means an increase in volume, so the reaction will shift to the side with more moles of gas

PRESSURE CHANGE EXAMPLE

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$

- Change: system pressure is decreased Vincreases
 - What must be done to both sides of the reaction to go back to equilibrium?
- Reaction shifts to side with more gas moles
 - so will shifts LEFT towards reactants

Shifts to side of rxn that must increase Shifts away from side of rxn that must decrease

 Reactants must increase & products must decrease to return to equilibrium

PRESSURE CHANGE EXAMPLE

 $N_2(g) + 3H_2(g) \leftrightarrow 2NH_3(g) + 92kJ$

Change: system volume is decreased

P increases

- What must be done to both sides of the reaction to go back to equilibrium?
- Reaction shifts to side with less gas moles
 - so will shift RIGHT towards products

Shifts to side of rxn that must increase Shifts away from side of rxn that must decrease

 Reactants must decrease & products must increase to return to equilibrium

TRY THIS ONE:

Predict how each of the following will affect the equilibrium:

$$H_2(g) + CO_2(g) + energy \leftrightarrow H_2O(g) + CO(g)$$

- ■Adding H₂O to the system ◆
- Removing CO from the system
- Adding H₂ to the system
- Adding a catalyst Nothing b/c only affects speed not reaction
- Removing energy
- Increase the volume of the system
 Nothing b/c equal # of moles

SAME ONE BUT IN TABLE FORM:

Predict how each of the following will affect the equilibrium:

$$H_2(g) + CO_2(g) + energy \leftrightarrow H_2O(g) + CO(g)$$

Stress	Direction of Shift	Effect on [H ₂]	Effect on [CO₂]	Effect on [H ₂ O]	Effect on [CO]
Adding H ₂ O	LEFT	1	1		
Removing CO	RIGHT	1	1	1	
Adding H ₂	RIGHT			1	1
Add catalyst	No Change				
Removing energy	LEFT	1	1	1	1
Increase volume	No Change				

